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What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?

Alex Kendall Yarin Gal
University of Cambridge University of Cambridge
agki3d@cam.ac.uk wig2 T98cam. ac.uk
Abstract

There are two major types of uncertainty one can model. Aleatoric uncertainty
captures noise inherent in the observations. On the other hand, epistemic uncer-
tainty accounts for uncertainty in the model — uncertainty which can be explained
away given enough data. Traditionally it has been difficult to model epistemic
uncertainty in computer vision, but with new Bayesian deep learning tools this
is now possible. We study the benefits of modeling epistemic vs. aleatoric un-
certainty in Bayesian deep leaming models for vision tasks. For this we present
a Bayesian deep learning framework combining input-dependent aleatoric uncer-
tainty together with epistemic uncertainty. We study models under the framework
with per-pixel semantic segmentation and depth regression tasks. Further, our
explicit uncertainty formulation leads to new loss functions for these tasks, which
can be interpreted as learned attenuation. This makes the loss more robust to noisy
data, also giving new state-of-the-art results on segmentation and depth regression
benchmarks.

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Kendall, A, & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. In Advances in neural information processing
systems (pp. 5574-5584).
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Under review as a conference paper at ICLR 2016

BAYESIAN CONVOLUTIONAL NEURAL NETWORKS
WITH BERNOULLI APPROXIMATE VARIATIONAL
INFERENCE

Yarin (zal & FZoubin Ghahramani
University of Cambridge
{vg279, 2g201}Ecam. ac.uk

ABSTRACT

Convolutional neural networks (CNNs) work well on large datasets. But labelled
data 15 hard to collect, and in some applications larger amounts of data are not
available. The problem then is how to use CNNs with small data — as CNNs
overfit quickly. We present an efficient Bayesian CNN, offering better robust-
ness to over-fitting on small data than traditional approaches. This is by placing a
probability distribution over the CNN's kernels. We approximate our model’s in-
tractable posterior with Bernoulli variational distributions, requiring no additional
model parameters.

On the theoretical side, we cast dropout network training as approximate inference
in Bayesian neural networks. This allows us to implement our model using exist-
ing tools in deep learning with no increase in time complexity, while highlighting a
negative result in the field. We show a considerable improvement in classification

accuracy compared to standard techniques and improve on published state-of-the-
art results for CIFAR-10.

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158.
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Dropout as a Bayesian Approximation:

Representing Model Uncertainty in Deep Learning

Yarin Gal
Fouhin Ghahramani

University of Cambridge

YG2T9@CAM AC UK
ZG201 @ CAM AC UK

Abstract

Deep learning tools have gained tremendous at-
tention in applied machine leamning. However
such tools for regression and classification do
not capture model uncertainty. In compari-
son, Bayesian models offer a mathematically
grounded framework to reason about model un-
certainty, but wsually come with a prohibitive
computational cost. In this paper we develop a
new theoretical framework casting dropout train-
ing in deep neural networks (MNs) as approxi-
mate Bayesian inference in deep Gaussian pro-
cesses. A direct result of this theory gives us
tools to model uncertainty with dropout NNs -
extracting information from existing models that
has been thrown away so far. This mitigates

tha mrahlam AF ramescambime onaardainber am Ao

mow & Marks, 2015; Nuzzo, 2014), new needs arise from
deep learning tools.

Standard deep learning tools for regression and classifica-
tion do not capture model uncertainty. In classification,
predictive probabilities obtained at the end of the pipeline
(the softmax output) are often erroncously interpreted as
model confidence. A model can be uncertain in its predic-
tions even with a high softmax output (fig. 1). Passing a
point estimate of a function (solid line la) through a soft-
max (solid line 1b) results in extrapolations with unjustified
high confidence for points far from the training data. =* for
example would be classified as class | with probability 1.
However, passing the distribution (shaded area la) through
a softmax (shaded area 1b) better reflects classification un-
certainty far from the training data.

Model uncertainty is indispensable for the deep learning

Proceedings of the 23" Internavional Conference on Machine
Learning, New York, NY, USA, 2016, IMLR: W&ECP volume
48. Copyright 2016 by the authon(s).

Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference

on machine learning (pp. 1050-1059).
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B Introduction

Convolutional Neural Networks

< Convolutional neural networks (CNNs) work well on large datasets.

< But labeled data is hard to collect, and in some applications larger amounts
of data are not available.
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B Introduction
Weakness of CNNs

“» CNNs overfit on small data.

% CNNs can not measure uncertainty.

In May 2016, the first fatality from an assisted driving system,
caused by the perception system confusing the white side of a trailer for
bring sky.
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NHTSA. PE 16-007. Technical report, U.S. Department of Transportation, National Highway Traffic Safety Administration, Jan 2017. Tesla Crash Preliminary
Evaluation Report
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B Introduction
Weakness of CNNs

“» CNNs overfit on small data.

% CNNs can not measure uncertainty.

An image classification system erroneously identified two African
Americans as gorillas.

[ —

Airplanes

Graduation

Jessica Guynn. Google photos labeled black people ‘gorillas’. USA Today, 2015.
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B Introduction
Weakness of CNNs

“» CNNs overfit on small data.

% CNNs can not measure uncertainty.

|l do OW.

If both these algorithms were able to assign a high level of
uncertainty to their erroneous predictions, then the system may
have been able to make better decisions and likely avoid disaster.




B Introduction

Bayesian Neural Networks

<+ Bayesian NNs are robust to overfitting.

<+ Bayesian NNs offer uncertainty estimates, and easily learn from small datasets.

hilters output

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint
arXiv:1901.02731.
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B Introduction

Bayesian Neural Networks + Computer Vision

(a) Input Image (b) Ground Truth  (c¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Kendall, A, & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. In Advances in neural information processing
systems (pp. 5574-5584).
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B Frequentist VS Bayesian Parameter Learning

Frequentist Bayesian
Network with Network with
point-estimates as weights probability distribution as weights
P(parameter|Data)
filters filters

input input

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint
arXiv:1901.02731.
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B Frequentist VS Bayesian Parameter Learning

How can Bayesian parameter learning
prevents overfitting?




B Frequentist VS Bayesian Parameter Learning

Flipping a coin : parameter p

% A single random variable x € {0, 1}
< x might describe the outcome of flipping a coin with x = 1 representing
'heads’, and x = 0 representing ‘tails’.
“Plx=1p) =p,Px=0|p) =1-p
< The probability distribution over x can be written in the form
Bern(x|p) = p*(1 —p)*™*

< Now suppose we have a data set D = {x, ... ... ,xy} of observed values of x.

Head

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
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B Frequentist VS Bayesian Parameter Learning

Flipping a coin : parameter p

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
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B Frequentist VS Bayesian Parameter Learning

Flipping a coin (Maximum Likelihood Estimator, MLE)

% Now suppose we have a data set D = {x4, ... ... ,xy} of observed values of x.

< L= P(Dlp) = [ln=1P(xnlp) = [15=1 Bern(x,|p) = [Ih=1 p**(1 — p)*™*n
“InL=1InPD|p) = XN_1InP(x,lp) = XN_1{x,Inp + (1 — x,) In(1 — p)}

., OlnL

L X 4
dp 0

*

1
. _ N
W p= ﬁzn=1xn

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Korea University * Industrial Management En

gineering * DMQA m dmgqa.korea.ackr




B Frequentist VS Bayesian Parameter Learning

Flipping a coin (Bayesian approach)

P(D|p)P(p) _ LikelihoodxPrior _ P(D|p)pP(p)

“ P(p|D) = P(D) Evidence — JP(D|p)P(p

< We need to introduce a prior distribution P(p) over the parameter p.

% The likelihood function takes the form of the product of factors of the form
p*n(1 —p)~*. If we choose a prior to be proportional to powers of p and
(1-p), then the posterior distribution will have the same functional form as
the prior.

% This property is called conjugacy.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Korea Universi
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B Frequentist VS Bayesian Parameter Learning
Flipping a coin (Bayesian approach)

P(D|p)P(p) _ LikelihoodxPrior _ P(D|p)pP(p)

< P(p|D) = P(D) Evidence — JP(D|p)P(p

% We need to introduce a prior distribution P(p) over the parameter p.

T . . P I'(a+p) - —
When likelihood function is a discrete distribution [edit] pdfp(p; a,f) = WF'(B,B)pa 1(1 — p)ﬁ 1
__ Conjugate prior Prior i
Likelihood Model parameters ST Posterior hyperparameters
distribution hyperparameters
Tl T
Bernoulli 1 (probability) Beta a, 9 o+ Z i, B+n— E e
i=1 i=1
T (£ T
Binomial P (probability) Beta @, § o+ E xi, B+ Z N; — Z T
i=1 i=1 i=1
Megative binomial n
with known failure P (probability) Beta @, § o+ E Ti, B+
' a—1

https://en.wikipedia.org/wiki/Conjugate_prior
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B Frequentist VS Bayesian Parameter Learning

(Bayesian approach)

ipping a coin
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B Frequentist VS Bayesian Parameter Learning

How can Bayesian parameter learning
measures uncertainty?




B Frequentist VS Bayesian Parameter Learning

Frequentist
Network with
point-estimates as weights

filters output

input

Bayesian
Network with
probability distribution as weights
P(w|Data)

PO XYY = [ p0r|at wwlx, i

hilters output

input

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint

arXiv:1901.02731.
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B Frequentist VS Bayesian Parameter Learning

Frequentist
Network with
point-estimates as weights

Bayesian
Network with
probability distribution as weights

P(w|Data)
y* = Wx* P(y*|x*,X,Y) = jp(y*| x*,wW)P(w|X,Y)dw
| y*=Wx*,  W~P(w|X, Y)I
filters output filters output
_ African Person ™" I bL
/ Black Gori /

Gorilla N\ African
Gorilla
Person

Black
African

ooooooo

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint
arXiv:1901.02731.
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Approximate Inference

for Bayesian Neural Networks
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B Approximate Inference for Bayesian NNs

Bayesian
Network with

probability distribution as weights /-_‘\
P(w|Data) -
" '/ P(w|D)

P07t = [ o1 o  poPe

tilters Dl]tpl]t - P (D)
input i
% _ Likelihood x Prior
, | B Evidence
A A P(D|w)P(w)

~ [P(DIw)P(w) dw

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint
arXiv:1901.02731.
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B Approximate Inference for Bayesian NNs

*» The distribution P(w|D) is intractable.

% We need to approximate it with a variational distribution g4(w)

P(w|D)

B P(D|w)P(w)
I :10)))

B Likelihood|X Prior
B Evidence

B P(D|w)P(w)
~ [P(DIw)P(w)dw

Posterior Distribution P(w|D) Inference

Variational |Inference

Ay

Optimization
Minimize the Kullback-Leibler divergence
KL(gg W)I[P(w|D))

qo (W)=P(w|D) ———>KL(gg(W)||P(w|D)) = 0

Ex) N(u,0%)——> 0 = p,0”




B Approximate Inference for Bayesian NNs

< Indirectly reducing the gap between the variational distribution and

the posterior distribution by maximizing ELBO.

KL(ge W)I[p(w|D)) = | q9<w>lndw

Log marginal likelihood Inp(D) = ELBO(variational free energy) + KL(qg(W)||[p(w|D))

=JCI9(W) In(D|w) dW-er(W) 111629((WW))

dw + KL(qe(W)|Ip(w|D))

| KL(qe(wW)|lp(w|D))

Inp(D)
ELBO

Appendix 1. Variational inference

Bishop, C. M. (2006). Pattern recognition and machine learning. springer. ELBO = eVIdence Iower bound
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B Approximate Inference for Bayesian NNs

< Indirectly reducing the gap between the variational distribution and

the posterior distribution by maximizing ELBO.

Approximate posterior distribution
by variational inference

Minignize KL(ge (W)|[p(w|D))

= I\/Iaxeimize ELBO




B Approximate Inference for Bayesian NNs
The objective of Bayesian NNs

Minimize KL(gg (W)||p(w|D)
= Maximize ELBO

N
— Minimize = " | a5 (w)logp(ilf* Ge))dw + KL(as W)lIp W)
i=1
= —%z j qo W)logp ;| f” (x;))dw + KL(qe(wW)|[p(w))  Mini-batch optimization
i€s

N
B _MZ f p(€) logp(yi|f9© 9 (x)))de + KL(qow)|lp(w))  Reparameterization trick
IES

N
- M .ESIOgP(Yng(Q’E) (xi)) + KL(Q@ (W)”p(W)) Monte Carlo integration
l

Appendix 2. Reparameterization trick
Gal, Y. (2016). Uncertainty in deep learning (Doctoral dissertation, PhD thesis, University of Cambridge).
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B Approximate Inference for Bayesian NNs
The objective of Bayesian NNs

< By using stochastic gradient descent, we can update 6

Algorithm 1 Minimise divergence between gs(w) and p(w|X,Y)
Given dataset X,Y,

Define learning rate schedule n,

. Initialise parameters # randomly.

repeat
Sample M random variables €; ~ p(€), S a random subset of {1,.., N} of size M.
Calculate stochastic derivative estimator w.r.t. #:

N 0

a
£900:6) (x,)) + —KL(
T log p(vil (xi)) + 55 KL(9s(w w)||p(w)).

[ L e

[ T |

Af

ics

=

Update #:
B+ 6+ r;r,&uf?

: until # has converged.

[ 5]
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B Approximate Inference for Bayesian NNs
The objective of Bayesian NNs

Posterior Distribution P(w|D) Inference

Variational |Inference

AV

Optimization 6




Dropout as a Bayesian

Approximation




B Dropout as a Bayesian Approximation
MC Dropout to Bayesian CNNs

CNNs + L2norm + MC dropout
= Bayesian CNNs

We can implement Bayesian CNNs using
existing tools in deep learning




B Dropout as a Bayesian Approximation

Kore:

Dropout

Drop Prop : 1-p, Keep Prop : p

% Standard dropout is a technique used to avoid over-fitting in neural networks.

% Setting 1-p proportion of the elements (nodes) of the layer to zero.

(a) Standard Neural Ne

ib) After applying dropout.

w M, 0 0 M,

1My e;M, esM;e M, pM; pM, pM; pM,

Present with Always
probability p

(a) At training time

present
(b) At test time

e;~Beroulli(p)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I, & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. 7he Journal

of Machine Learning Research, 75(1), 1929-1958.
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B Dropout as a Bayesian Approximation

MC Dropout to Bayesian CNNs Drop Prop : 1-p, Keep Prop : p

% The standard dropout test time approximation does not perform well when
dropout is applied after convolutions.

< Averaging stochastic forward passes through the model at test time (using MC
dropout).

y<_W M1 0 0 M4_
e—w M, 0 My 0

WM, 0 0 M, y—w M; M, | 0 0

ElMl EZMZ E3M3 E4M4_

Present with Always

probability p present
(a) At training time (b) At test time (b) At test time
€;~Beroulli(p) MC : Monte Carlo

Korea University * Industrial Management Engineering * DMQA = dmgqa.korea.ackr



B Dropout as a Bayesian Approximation

MC Dropout to Bayesian CNNs Drop Prop : 1-p, Keep Prop : p

W = eM, e~Bernoulli(p)

Minimize KL(gg (W)||p(w|D))
= Maximize ELBO

=Minimize —=3,cslogp(yi| F9C9 (x) + KL(qe W)l Ip(w))

o Regression : MSE |2 norm (||M||2) + MC dropout
Classification : Softmax cross entropy 2

Gal, Y. (2016). Uncertainty in deep learning (Doctoral dissertation, PhD thesis, University of Cambridge).
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B Dropout as a Bayesian Approximation

Results

< Although Standard dropout lenet-all performs very badly on both datasets
(dashed blue line), when evaluating the same network with MC dropout (solid

blue line) the model outperforms all others.

LB - ——— ——
s . —— Standard dropout (lenet-all}
16k 1 — MC dropout {lenet-all)
' —— Standard dropout {lenet-ip)
—  MC dropout {lenet-ip)
1Ar . - Nodropout (lenet-none)
' %
g} 1.2+ E
Ld .
5 |
e -
____________ e -,"”"\ IF
0.8 j\\‘\\ T a
'*‘“-H._W/"/\F’_'_—"-a— - ——
06L el i
- \‘“-—-—"_‘a ]
0.4 L '
10* 10° 10°
Balches
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10"

Error (3]

&0

lenet-ip : only dropout after FC layer

551

50

as |

anl
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— — '__""'1_"!'!'[_ Tt TEETTTT LS
20+ — -
15 L - .
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(b) CIFAR-10

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02758.
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B Dropout as a Bayesian Approximation

Results

< Evaluate our model’s tendency to over-fit on training sets decreasing in size.
< Randomly split the MNIST dataset into smaller training sets of sizes 1/4.
subsets of MNIST decreasing in size.

«» Test error of LeNet trained on random

o8z

%)

g

B

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02758.
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B Dropout as a Bayesian Approximation

Results

% In green is test error with Standard dropout. MC dropout achieves a significant
improvement (more than 1 standard deviation) after 20 samples.

8.2 T T T T
4\" . — Standard dropout (DSN-aug)

8.1F  JTINT "___ - MC dropout err (DSN-aug) |
~8o0F LA T _ i
2 LML
S 7.9f . f‘ \ I
m S il

N i /

il
it it -

0 20 40 60 80 100
MC samples

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02758.
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B Uncertainty in Bayesian NNs

Korea

Uncertainty

% Standard deep learning tools for regression and classification do not capture
model uncertainty.

“ In classification, predictive probabilities obtained at the end of the pipeline
(the softmax output) are often erroneously interpreted as model confidence.

% Extrapolations with unjustified high confidence for points far from the

training data
counter example

< = 10} , : - '
15} :
| 08F ! | i
10} T 1 !
| s} o B . R
= S - | !
= o = 9T 4 . :
-5} 1 0.2F ' '
10, 00[ ‘ 1 =
-3 -2 -1 3 2 -1 0 1 2 3 4 x* 5
£ £
(a) Arbitrary function f(x) as a function of data x (softmax input) (b) o( f(x)) as a function of data x (softmax output)

Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference
on machine learning (pp. 1050-1059).
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B Uncertainty in Bayesian NNs

Uncertainty

< In Bayesian modeling, there are two main types of uncertainty.

Uncertainty

 The uncertainty
/\ caused by the model
itself.

» This uncertainty

measure the noise Aleatoric Epistemic « This uncertainty can
inherent in the uncertainty uncertainty be reduced given
observations.

/\ more data

 This uncertainty is

Homoscedastic Heteroscedastic oft%n lreferre;i j[ot as
uncertainty uncertainty model uncertainty.

« Aleatoric uncertainty can further be categorized into homoscedastic uncertainty, the
uncertainty which stays constant for different inputs,
and heteroscedastic uncertainty which depends on the inputs to the model.
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Input Image Aleatoric Epistemic
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B Uncertainty in Bayesian NNs

How to make a model
which can measure these uncertainties?




B Uncertainty in Bayesian NNs

Epistemic Uncertainty modeling

% Epistemic uncertainty is modeled by placing a prior distribution over a
models weights, and then trying to capture how much these weights vary

given some data.

N L2 norm +MC dropout
1 .
Minimize -~ > 1ogp(yi|f™ () KL (g5 W)lIp(w))
=1

Full batch, N data points, W; ~ g5 (W),
0 the set of the simple distribution’s parameters to be optimized.




B Uncertainty in Bayesian NNs

Heteroscedastic uncertainty modeling

% There are homoscedastic and heteroscedastic uncertainty in aleatoric.
\/

% Heteroscedastic models are useful in cases where parts of the observation

space might have higher noise levels than others.

1 A ~
Minimize — NE IOgP(yi|fWi(Xi))
i=1

y=f+¢€e~N(0,0c?)
yNN(frO-Z)

The negative log likelihood can be further simplified as

w; 1 w; 2 1 2
—1ogp(yilf ™ () o 5—|lyi = fP@|| +7logo
for a Gaussian likelihood, with ¢ the model’s observation noise parameter-
capturing how much noise we have in the outputs.
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B Uncertainty in Bayesian NNs

Heteroscedastic uncertainty modeling

% There are homoscedastic and heteroscedastic uncertainty in aleatoric.
% Heteroscedastic models are useful in cases where parts of the observation

space might have higher noise levels than others.

1 J ~
Minimize — Nz log p(yz|f“’i(xz))
i—1

N
1 1 N 2 1
B B WY
i=1 '




B Uncertainty in Bayesian NNs

Epistemic + Heteroscedastic + Computer vision model

X Input y Output

Neural
Networks

Semantic
segmentation
Depth regression

Pixel-wise class

Image ) .
9 Pixel-wise value




D : the number of output pixels y;

B Uncertainty in Bayesian NNs

Epistemic + Heteroscedastic + Computer vision model
Head split to predict both y and 62

< Turn the heteroscedastic NN into a Bayesian NN by placing a distribution

over its weights.

[em———————————— o W Antlitlte _

| Qutput Uy (%) |l| i I (%) i

: ey y ] e —— :

! !

| A |

: 5.6 =) W g(W) |

i |

! !

: !

| Input X Image :
[ _-_-_-_-_—_—_—_—_—_-_-_-_-_-_-_-_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—.r.r.r.r_I
P 1 1!
i DZ Azllyl ylll logal _DZZeXp( Sl)llyl ylll + 5 Sl:
L ----------- ‘““““““&“““““‘ -------- J

| + L2 norm (||M|| ) + MC dropout.
|




B Uncertainty in Bayesian NNs

Loss attenuation

% The predictive uncertainty acts as a robust regression function by allowing

the network to learn to attenuate the effect from erroneous labels.

Discouraged from predicting high
uncertainty for all points




B Uncertainty in Bayesian NNs

Measuring Uncertainty

< The predictive uncertainty for pixel y in this combined model can be

approximated using:

Q

Var(y)

1T (1 r )2 IR
= 92 — = ) [+Hz > &

Epistemic Heteroscedastic
uncertainty uncertainty
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B Uncertainty in Bayesian NNs

Experiments

< Evaluating methods with pixel-wise depth regression & semantic

segmentation.

semantic segmentation pixel-wise depth regression

Korea University * Industrial Management Engineering - DMQA ® dmga.korea.ac.kr



B Uncertainty in Bayesian NNs

Experiments

< Evaluating methods with pixel-wise depth regression & semantic

segmentation.

Tasks Dataset
A road scene
CamVid 367 training images and 233 test images
' 11 classes
Semantic

Resize images to 360x480 pixels

Segmentation

NYU v2 40-class

A indoor segmentation dataset
1449 images with resolution 640 x480 from
464 different indoor scenes.

Depth Make3D

400 training and 134 testing images
Gathered using a 3D laser scanner
Resizing images to 345x460 pixels

Regression

NYU v2 Depth

The same dataset used for segmentation above
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B Uncertainty in Bayesian NNs

Results

< Semantic segmentation performance : Modeling both aleatoric and epistemic
uncertainty gives a notable improvement in segmentation accuracy over state

of the art baselines.

CamVid | ToU NYUv2 40-class | Accuracy | IoU
SegNet [28 46.4
FCN-8 57.0 SegNet [28] 66.1 23.6
DeepLab-LFOV [24 61.6 FCN-8 [29] 61.8 31.6
gaﬁsiar% Net [22] gg-; Bayesian SegNet 68.0 32.4
tlation . : o )
Dileiong SO P Eigen and Fergus 65.6 34.1
DenseNet 66.9 This work:
This work: DeepLabLargeFOV 70.1 36.5
DenseNet (Our Implementation) | 67.1 + Aleatoric Uncertainty 70.4 37.1
+ Aleatoric Uncertainty 67.4 + Epistemic Uncertainty 70.2 36.7
+ Epistemic Uncertainty 67.2 + Aleatoric & Epistemic 70.6 37.3
+ Aleatoric & Epistemic 67.5
(a) CamVid dataset for road scene segmentation. (b) NYUv2 40-class dataset for indoor scenes.

Appendix 3. loU
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B Uncertainty in Bayesian NNs

Results

% Depth regression performance : comparison to previous approaches on depth
regression data NYUv2 Depth. Modeling the combination of uncertainties

Improves accuracy.

Make3D | rel | rms | logio NYU ¥2 Depth rel | mms | logg
Karsch et al. [33] 0.355 | 9.20 | 0.127 Karsch et al. 0374 | 112 1 0.134
: - Ladicky et al.

Liu et al. [34] 0.335 | 9.49 | 0.137 Liu et a|i_|_1:1] 0335 | 1.06 | 0.127
Li et al. [35] 0.278 | 7.19 | 0.092 Lietal BT 0.232 | 0.821 | 0.094
: . 7 Eigen et al. [27 0.215 | 0.907 -
Laina et al. 0.176 | 4.46 | 0.072 Fisen and Fersus (32) | 0158 | 0641 |

This work- Laina et al. 0.127 | 0.573 | 0.055
DenseNet Baseline 0.167 | 3.92 | 0.064 _ Tl work:
+ Aleatoric Uncertainty | 0.149 | 3.93 | 0.061 D‘;ﬁ“”’*‘. 'f‘ﬁ”’“l'm - H: :?} ggg‘; ggié
+ Epistemic Uncertainty | 0.162 | 3.87 | 0.064 IEP?:EEE; L}:ﬂ;{a;m% 0112 | 0512 | 0,049
+ Aleatoric & Epistemic | 0.149 | 4.08 | 0.063 + Aleatoric & Epistemic | 0.110 | 0.506 | 0.045

(a) Make3D depth dataset [25]. (b) NYUv2 depth dataset [23].
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B Uncertainty in Bayesian NNs

Results
Precision = TP/(TP+FP) Predicted Condition
Recall = TP/(TP+FN) Positive 1 Negative 0
Positive 1 Trg_e Falsg
N positive negative
True condition
. False True
Negative 0O o :
positive negative

by removing pixels with uncertainty larger than various percentile thresholds.

5 Increasing uncertainty,
'.% 0,94 1 =] . . .
¢ c Decreasing precision

= Increasing FP
0801 e Aleatoric Uncertainty & 4| == Aleatoric Uncertainty .
naa4 === Epistemic Uncertainty . ==+ Epistemic Uncertainty = |nCI’eaSIng I’eca”
0.0 D.2 D.4 D 0.3 1.0 0.0 0.2 0.4 0.6 0.8 1.0 = DecreaS|ng FN
Recall Recall
(a) Classification (CamVid) (b) Regression (Make3D)

Figure 2: Precision Recall plots demonstrating both measures of uncertainty can effectively capture accuracy,
as precision decreases with increasing uncertainty.

Korea University * Industrial Management Engineering - DMQA ® dmga.korea.ac.kr



B Uncertainty in Bayesian NNs

Kore:

Results

< This shows that aleatoric uncertainty remains approximately constant, while

epistemic uncertainty decreases the closer the test data is to the training

distribution, demonstrating that epistemic uncertainty can be explained away

with sufficient training data (but not for out-of-distribution data).

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance | variance
Make3D/ 4 | Make3D | 5.76 0.506 1.73
Make3D/ 2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 278
Make3D/ 4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0461 4.87

(a) Regression

a University * Industrial Management Engineering * DMQA ® dmqa.korea.ac.kr

Train Test Aleatoric | Epistemic logit
dataset dataset Iol | entropy | varance (x 10~
CamVid/4 | CamVid | 57.2 0.106 1.96
CamVid/2 | CamVid | 62.9 0.156 1.66
CamVid CamVid | 67.5 0.111 1.36
CamVid/4 | NYUv2 0.247 10.9
CamVid NYUv2 0.264 11.8
(b) Classification




B Conclusions

<+ Bayesian parameter learning prevents overfitting
% L2 norm + MC dropout : practical Bayesian NNs
» Bayesian NNs in computer vision can measure uncertainty

% Measuring uncertainty helps make decision
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Thank You!
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B Appendix 1. Variational Inference

Log marginal likelihood Inp(D)
= [ 1np(®) gy (wyaw

p(D)p(w|D) v
p(w|D)
p(w,D)
p(w|D)

= f qo(w)ln

dw

= f qo(w)ln

— fqe(w)lnp(iiv];)lggw) dw
qo(W)p(D|w)p(w)
qo (W)p(w|D)
_ j ” (w)in PLIWIP(W) 9o (W)
qo (W) p(w|D)

= ELBO(variational free energy) + KL(qg(W)||p(w|D))

= j qo(w)ln

dw + j qo(w)ln dw




B Appendix 2. Reparameterization trick

Target
Exponential

Cauchy

Laplace

Laplace

Std Gaussian

Gaussian

Rademacher

Log-Normal

Inv Gamma

p(z0)
exp(—z);z >0

1
'rr[l-l-:[fzj

L£(0;1) = exp
(—l=l)
L(p;b)

N(0;1)

N(uw;RR")
Rad(%)
In N (p;0)
1G(k; 0)

Base p(€)
e~ [0;1]
€~ [0;1]

e~ [0;1]
e~ [0;1]

€ ~ [0;1]

e~N(0;1)

e ~ Bern(3)
e~ N(p;0?)
e~ G(k;0°1)

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Korea
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One-liner g(e; )

In(1/e)

tan(me)
In()

p — bsgn(e) In
(1—2[e])

\/In() cos
(2mez)
1+ Re

2e — 1
exp(e)

3




B Appendix 3. loU

target N prediction

ToU =

target U prediction

Ground o
Truth Prediction

Intersection Union

ANB AUB

https://www.jeremyjordan.me/evaluating-image-segmentation-models/
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