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Introduction

https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Convolutional Neural Networks

 Convolutional neural networks (CNNs) work well on large datasets.

 But labeled data is hard to collect, and in some applications larger amounts 
of data are not available.
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Introduction

Weakness of CNNs

 CNNs overfit on small data.

 CNNs can not measure uncertainty.

In May 2016, the first fatality from an assisted driving system,
caused by the perception system confusing the white side of a trailer for 
bring sky.

NHTSA. PE 16-007. Technical report, U.S. Department of Transportation, National Highway Traffic Safety Administration, Jan 2017. Tesla Crash Preliminary 
Evaluation Report
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Introduction

Jessica Guynn. Google photos labeled black people ’gorillas’. USA Today, 2015.

An image classification system erroneously identified two African 
Americans as gorillas.

Weakness of CNNs

 CNNs overfit on small data.

 CNNs can not measure uncertainty.
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Introduction

If both these algorithms were able to assign a high level of 
uncertainty to their erroneous predictions, then the system may 
have been able to make better decisions and likely avoid disaster.

Weakness of CNNs

 CNNs overfit on small data.

 CNNs can not measure uncertainty.
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Introduction

Bayesian Neural Networks

 Bayesian NNs are robust to overfitting.

 Bayesian NNs offer uncertainty estimates, and easily learn from small datasets.

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint 
arXiv:1901.02731.
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Introduction

Bayesian Neural Networks + Computer Vision

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. In Advances in neural information processing 
systems (pp. 5574-5584).
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Frequentist VS Bayesian
Parameter Learning



15Korea University 〮 Industrial Management Engineering 〮 DMQA  dmqa.korea.ac.kr

Frequentist VS Bayesian Parameter Learning

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint 
arXiv:1901.02731.

Frequentist
Network with 

point-estimates as weights

Bayesian
Network with 

probability distribution as weights

P(parameter|Data)
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Frequentist VS Bayesian Parameter Learning

How can Bayesian parameter learning 
prevents overfitting?
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Frequentist VS Bayesian Parameter Learning

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Flipping a coin : parameter p

 A single random variable 𝑥 ∈ {0, 1}

 x might describe the outcome of flipping a coin with 𝑥 = 1 representing 

‘heads’, and 𝑥 = 0 representing ‘tails’.

 𝑃 𝑥 = 1 𝑝 = 𝑝, 𝑃 𝑥 = 0 𝑝 = 1 − 𝑝

 The probability distribution over 𝑥 can be written in the form 

Bern x p = 𝑝𝑥(1 − 𝑝)1−𝑥

 Now suppose we have a data set D = {𝑥1, …… , 𝑥𝑁} of observed values of 𝑥.

Head Tail
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Frequentist VS Bayesian Parameter Learning

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Flipping a coin : parameter p

# 1 #2 #3

……..

Head Head Head
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Frequentist VS Bayesian Parameter Learning

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Flipping a coin (Maximum Likelihood Estimator, MLE)

 Now suppose we have a data set D = {𝑥1, …… , 𝑥𝑁} of observed values of 𝑥.

 𝐿 = 𝑃 𝐷 𝑝 = ς𝑛=1
𝑁 𝑃 𝑥𝑛 𝑝 = ς𝑛=1

𝑁 Bern 𝑥𝑛 p = ς𝑛=1
𝑁 𝑝𝑥𝑛(1 − 𝑝)1−𝑥𝑛

 ln 𝐿 = ln𝑃 𝐷 𝑝 = σ𝑛=1
𝑁 ln 𝑃 𝑥𝑛 𝑝 = σ𝑛=1

𝑁 {𝑥𝑛 ln 𝑝 + (1 − 𝑥𝑛) ln 1 − 𝑝 }


𝜕𝑙𝑛𝐿

𝜕𝑝
= 0

 𝑝 =
1

𝑁
σ𝑛=1
𝑁 𝑥𝑛
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Frequentist VS Bayesian Parameter Learning

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Flipping a coin (Bayesian approach)

 𝑃 𝑝 𝐷 =
𝑃 𝐷 𝑝 𝑃 𝑝

𝑃 𝐷
=

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
=

𝑃 𝐷 𝑝 𝑃 𝑝

׬ 𝑃 𝐷 𝑝 𝑃 𝑝

 We need to introduce a prior distribution 𝑃 𝑝 over the parameter 𝑝.

 The likelihood function takes the form of the product of factors of the form 

𝑝𝑥𝑛(1 − 𝑝)1−𝑥𝑛 . If we choose a prior to be proportional to powers of p and 

(1-p), then the posterior distribution will have the same functional form as 

the prior.

 This property is called conjugacy.
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Frequentist VS Bayesian Parameter Learning

https://en.wikipedia.org/wiki/Conjugate_prior

Flipping a coin (Bayesian approach)

 𝑃 𝑝 𝐷 =
𝑃 𝐷 𝑝 𝑃 𝑝

𝑃 𝐷
=

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑×𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
=

𝑃 𝐷 𝑝 𝑃 𝑝

׬ 𝑃 𝐷 𝑝 𝑃 𝑝

 We need to introduce a prior distribution 𝑃 𝑝 over the parameter 𝑝.

pdf 𝑝 𝑝; 𝛼, 𝛽 =
Γ 𝛼+𝛽

Γ 𝛼 Γ 𝛽
𝑝𝛼−1 1 − 𝑝 𝛽−1
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Frequentist VS Bayesian Parameter Learning

프로그래머를 위한 베이지안 with 파이썬, 캐머런 데이비슨 필론 지음, 곽승주 옮김

Flipping a coin (Bayesian approach)
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Frequentist VS Bayesian Parameter Learning

How can Bayesian parameter learning 
measures uncertainty?
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Frequentist VS Bayesian Parameter Learning

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint 
arXiv:1901.02731.

Bayesian
Network with 

probability distribution as weights
P(w|Data)

𝑃 𝑦∗ 𝑥∗, 𝑋, 𝑌 = න𝑝(𝑦∗| 𝑥∗, 𝑤)𝑃 𝑤 𝑋, 𝑌 𝑑𝑤

Frequentist
Network with 

point-estimates as weights

𝑦∗ = 𝑊𝑥∗
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Frequentist VS Bayesian Parameter Learning

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint 
arXiv:1901.02731.

Bayesian
Network with 

probability distribution as weights
P(w|Data)

𝑃 𝑦∗ 𝑥∗, 𝑋, 𝑌 = න𝑝(𝑦∗| 𝑥∗, 𝑤)𝑃 𝑤 𝑋, 𝑌 𝑑𝑤

𝑦∗ = 𝑊𝑥∗, 𝑊~𝑃(𝑤|𝑋, 𝑌)

Frequentist
Network with 

point-estimates as weights

𝑦∗ = 𝑊𝑥∗

African

Gorilla

Person

Black

Gorilla African
Gorilla
Person
Black
African
…….
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Approximate Inference
for Bayesian Neural Networks
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Approximate Inference for Bayesian NNs

Shridhar, K., Laumann, F., & Liwicki, M. (2019). A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference. arXiv preprint 
arXiv:1901.02731.

Bayesian
Network with 

probability distribution as weights
P(w|Data)

𝑃 𝑦∗ 𝑥∗, 𝑋, 𝑌 = න𝑝(𝑦∗| 𝑥∗, 𝑤)𝑃 𝑤 𝑋, 𝑌 𝑑𝑤

𝑃 𝑤 𝐷

=
𝑃 𝐷 𝑤 𝑃 𝑤

𝑃 𝐷

=
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒

=
𝑃 𝐷 𝑤 𝑃 𝑤

𝑃׬ 𝐷 𝑤 𝑃 𝑤 𝑑𝑤
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Optimization
Minimize the Kullback-Leibler divergence

KL(𝑞𝜃(𝑤)||𝑃 𝑤 𝐷 )

𝑞𝜃(𝑤)=𝑃 𝑤 𝐷 KL(𝑞𝜃(𝑤)||𝑃 𝑤 𝐷 ) = 0

Approximate Inference for Bayesian NNs

𝑃 𝑤 𝐷

=
𝑃 𝐷 𝑤 𝑃 𝑤

𝑃 𝐷

=
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒

=
𝑃 𝐷 𝑤 𝑃 𝑤

𝑃׬ 𝐷 𝑤 𝑃 𝑤 𝑑𝑤

 The distribution 𝑃 𝑤 𝐷 is intractable.

 We need to approximate it with a variational distribution 𝒒𝜽(𝒘)

Posterior Distribution 𝑃 𝑤 𝐷 Inference

Variational Inference

Ex) 𝑁 𝜇, 𝜎2 𝜃 = 𝜇, 𝜎2
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Approximate Inference for Bayesian NNs

 Indirectly reducing the gap between the variational distribution and 

the posterior distribution by maximizing ELBO.

KL(𝑞𝜃(𝑤)||p 𝑤 𝐷 ) = 𝑞𝜃׬ 𝑤 𝑙𝑛
𝑞𝜃(𝑤)

𝑝(𝑤|𝐷)
𝑑𝑤

Appendix 1. Variational inference
Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Log marginal likelihood ln 𝑝 𝐷 = 𝐸𝐿𝐵𝑂 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐾𝐿(𝑞𝜃(𝑤)||𝑝 𝑤 𝐷 )

ELBO = evidence lower bound

ln 𝑝 𝐷
𝐸𝐿𝐵𝑂

𝐾𝐿(𝑞𝜃(𝑤)||𝑝 𝑤 𝐷 )

= න𝑞𝜃 𝑤 ln 𝐷 𝑤 𝑑𝑤 −න𝑞𝜃 𝑤 ln
𝑞𝜃 𝑤

𝑝 𝑤
𝑑𝑤 + 𝐾𝐿(𝑞𝜃(𝑤)||𝑝 𝑤 𝐷 )



30Korea University 〮 Industrial Management Engineering 〮 DMQA  dmqa.korea.ac.kr

Approximate Inference for Bayesian NNs

 Indirectly reducing the gap between the variational distribution and 

the posterior distribution by maximizing ELBO.

Approximate posterior distribution
by variational inference

Minimize KL(𝑞𝜃(𝑤)||p 𝑤 𝐷 )

= Maximize ELBO 

𝜃

𝜃
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Approximate Inference for Bayesian NNs

The objective of Bayesian NNs

Appendix 2. Reparameterization trick
Gal, Y. (2016). Uncertainty in deep learning (Doctoral dissertation, PhD thesis, University of Cambridge).

Minimize KL(𝑞𝜃(𝑤)||p 𝑤 𝐷
= Maximize ELBO

= 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −෍

𝑖=1

𝑁

න𝑞𝜃 𝑤 𝑙𝑜𝑔𝑝 𝑦𝑖 𝑓
𝑤 𝑥𝑖 𝑑𝑤 + 𝐾𝐿 𝑞𝜃 𝑤 ||p 𝑤

= −
N

M
෍

𝑖∈𝑆
න𝑞𝜃 𝑤 𝑙𝑜𝑔𝑝 𝑦𝑖 𝑓

𝑤 𝑥𝑖 𝑑𝑤 + 𝐾𝐿 𝑞𝜃 𝑤 ||p 𝑤

= −
N

M
෍

𝑖∈𝑆
න𝑝(𝜖) 𝑙𝑜𝑔𝑝 𝑦𝑖 𝑓

𝑔(𝜃,𝜖) 𝑥𝑖 𝑑𝜖 + 𝐾𝐿 𝑞𝜃 𝑤 ||p 𝑤

= −
N

M
෍

𝑖∈𝑆
log 𝑝 𝑦𝑖 𝑓

𝑔(𝜃,𝜖) 𝑥𝑖 + 𝐾𝐿 𝑞𝜃 𝑤 ||p 𝑤

Mini-batch optimization

Reparameterization trick

Monte Carlo integration
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Approximate Inference for Bayesian NNs

The objective of Bayesian NNs

 By using stochastic gradient descent, we can update 𝜃
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Approximate Inference for Bayesian NNs

The objective of Bayesian NNs

Posterior Distribution 𝑃 𝑤 𝐷 Inference

Variational Inference

Optimization 𝜃
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Dropout as a Bayesian 
Approximation
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Dropout as a Bayesian Approximation

MC Dropout to Bayesian CNNs

CNNs + L2norm + MC dropout
= Bayesian CNNs

We can implement Bayesian CNNs using 
existing tools in deep learning
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Dropout as a Bayesian Approximation

Dropout

 Standard dropout is a technique used to avoid over-fitting in neural networks.

 Setting 1-p proportion of the elements (nodes) of the layer to zero.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal 
of Machine Learning Research, 15(1), 1929-1958.

𝑀1 𝑀2 𝑀3 𝑀4

𝜖1𝑀1 𝜖2𝑀2 𝜖3𝑀3 𝜖4𝑀4

𝜖𝑖~𝐵𝑒𝑟𝑜𝑢𝑙𝑙𝑖(𝑝)

𝑀1 0 0 𝑀4𝑊

𝑝𝑀1 𝑝𝑀2 𝑝𝑀3 𝑝𝑀4

Drop Prop : 1-p, Keep Prop : p
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Dropout as a Bayesian Approximation

MC Dropout to Bayesian CNNs 

 The standard dropout test time approximation does not perform well when 
dropout is applied after convolutions.

 Averaging stochastic forward passes through the model at test time (using MC 
dropout).

𝑀1 𝑀2 𝑀3 𝑀4

𝜖1𝑀1 𝜖2𝑀2 𝜖3𝑀3 𝜖4𝑀4

𝜖𝑖~𝐵𝑒𝑟𝑜𝑢𝑙𝑙𝑖(𝑝)

𝑀1 0 0 𝑀4𝑊

𝑝𝑀1 𝑝𝑀2 𝑝𝑀3 𝑝𝑀4

𝑀1 0 0 𝑀4

𝑀1 0 𝑀3 0

0𝑀1 𝑀2 0

ො𝑦 𝑤

…
…

Drop Prop : 1-p, Keep Prop : p

MC : Monte Carlo

ො𝑦 𝑤

ො𝑦 𝑤
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Dropout as a Bayesian Approximation

MC Dropout to Bayesian CNNs

 𝑊 = 𝜖𝑀, 𝜖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

Minimize KL(𝑞𝜃(𝑤)||p 𝑤 𝐷 )

= Maximize ELBO

=Minimize − N

M
σ𝑖∈𝑆 log 𝑝 𝑦𝑖 𝑓

𝑔(𝜃,𝜖) 𝑥𝑖 + 𝐾𝐿 𝑞𝜃 𝑤 ||p 𝑤

Regression : MSE
Classification : Softmax cross entropy

L2 norm ( 𝑀
2

2
) + MC dropout

Gal, Y. (2016). Uncertainty in deep learning (Doctoral dissertation, PhD thesis, University of Cambridge).

Drop Prop : 1-p, Keep Prop : p
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Dropout as a Bayesian Approximation
Results

 Although Standard dropout lenet-all performs very badly on both datasets 
(dashed blue line), when evaluating the same network with MC dropout (solid 
blue line) the model outperforms all others.

lenet-ip :  only dropout  after FC layer

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158.
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Dropout as a Bayesian Approximation
Results

 Evaluate our model’s tendency to over-fit on training sets decreasing in size.
 Randomly split the MNIST dataset into smaller training sets of sizes 1/4.
 Test error of LeNet trained on random subsets of MNIST decreasing in size.

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158.
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Dropout as a Bayesian Approximation
Results

 In green is test error with Standard dropout. MC dropout achieves a significant 
improvement (more than 1 standard deviation) after 20 samples. 

Gal, Y., & Ghahramani, Z. (2015). Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158.
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Uncertainty 
in Bayesian Neural Networks
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Uncertainty in Bayesian NNs

Uncertainty

 Standard deep learning tools for regression and classification do not capture 

model uncertainty.

 In classification, predictive probabilities obtained at the end of the pipeline 

(the softmax output) are often erroneously interpreted as model confidence.

 Extrapolations with unjustified high confidence for points far from the 

training data

Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference 
on machine learning (pp. 1050-1059).

counter example
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Uncertainty in Bayesian NNs

Uncertainty

 In Bayesian modeling, there are two main types of uncertainty.

Uncertainty

Aleatoric
uncertainty

Epistemic
uncertainty

Heteroscedastic
uncertainty

Homoscedastic
uncertainty

• This uncertainty 
measure the noise 
inherent in the 
observations. 

• The uncertainty 
caused by the model 
itself. 

• This uncertainty can 
be reduced given 
more data

• This uncertainty is 
often referred to as 
model uncertainty.

• Aleatoric uncertainty can further be categorized into homoscedastic uncertainty, the 
uncertainty which stays constant for different inputs, 
and heteroscedastic uncertainty which depends on the inputs to the model.
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Uncertainty in Bayesian NNs

Input Image Aleatoric Epistemic 
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Uncertainty in Bayesian NNs

How to make a model 
which can measure these uncertainties?
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Uncertainty in Bayesian NNs

Epistemic Uncertainty modeling

 Epistemic uncertainty is modeled by placing a prior distribution over a 

models weights, and then trying to capture how much these weights vary 

given some data.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −
1

𝑁
෍

𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝑓
ෝ𝑤𝑖(𝑥𝑖) + 𝐾𝐿 𝑞𝜃 𝑤 ||p 𝑤

Full batch, N data points, ෡𝑊𝑖 ~ 𝑞𝜃
∗ (𝑊),

𝜃 the set of the simple distribution’s parameters to be optimized. 

L2 norm +MC dropout
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Uncertainty in Bayesian NNs

Heteroscedastic uncertainty modeling

 There are homoscedastic and heteroscedastic uncertainty in aleatoric.

 Heteroscedastic models are useful in cases where parts of the observation 

space might have higher noise levels than others.

𝑦 = 𝑓 + 𝜖, 𝜖 ~ 𝑁 0, 𝜎2

𝑦 ~ 𝑁 𝑓, 𝜎2

The negative log likelihood can be further simplified as

− log𝑝 𝑦𝑖 𝑓
ෝ𝑤𝑖 𝑥𝑖 ∝

1

2𝜎2
𝑦𝑖 − 𝑓 ෝ𝑤𝑖 𝑥𝑖

2
+
1

2
log𝜎2

for a Gaussian likelihood, with 𝜎 the model’s observation noise parameter-
capturing how much noise we have in the outputs.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −
1

𝑁
෍

𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝑓
ෝ𝑤𝑖(𝑥𝑖)
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Uncertainty in Bayesian NNs

Heteroscedastic uncertainty modeling

 There are homoscedastic and heteroscedastic uncertainty in aleatoric.

 Heteroscedastic models are useful in cases where parts of the observation 

space might have higher noise levels than others.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −
1

𝑁
෍

𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝑓
ෝ𝑤𝑖(𝑥𝑖)

=
1

𝑁
෍

𝑖=1

𝑁
1

2𝜎(𝑥𝑖)
2

𝑦𝑖 − 𝑓 ෝ𝑤𝑖 𝑥𝑖
2
+
1

2
log𝜎(𝑥𝑖)

2
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Uncertainty in Bayesian NNs

Epistemic + Heteroscedastic + Computer vision model

Neural 
Networks

• Semantic
segmentation

• Depth regression

Image
Pixel-wise class
Pixel-wise value

𝑿 Input ෝ𝒚Output
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Uncertainty in Bayesian NNs
Epistemic + Heteroscedastic + Computer vision model

 Turn the heteroscedastic NN into a Bayesian NN by placing a distribution 

over its weights.

ImageInput

Output

1

𝐷
෍

𝑖=1

𝑁
1

2ෝ𝜎𝑖
2 𝑦𝑖 − ෝ𝑦𝑖

2
+
1

2
log ෝ𝜎𝑖

2 =
1

𝐷
෍

𝑖=1

𝑁
1

2
exp(−𝑠𝑖) 𝑦𝑖 − ෝ𝑦𝑖

2
+
1

2
𝑠𝑖

+ L2 norm ( 𝑀
2

2
) + MC dropout

Head split to predict both ො𝑦 and ො𝜎2

D : the number of output pixels 𝑦𝑖
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Uncertainty in Bayesian NNs

1

𝐷
෍

𝑖=1

𝑁
1

2ෝ𝜎𝑖
2 𝑦𝑖 − ෝ𝑦𝑖

2
+
1

2
log ෝ𝜎𝑖

2 =
1

𝐷
෍

𝑖=1

𝑁
1

2
exp(−𝑠𝑖) 𝑦𝑖 − ෝ𝑦𝑖

2
+
1

2
𝑠𝑖

Loss attenuation

 The predictive uncertainty acts as a robust regression function by allowing 

the network to learn to attenuate the effect from erroneous labels.

The residual’s weighting

Discouraged from predicting high 
uncertainty for all points
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Uncertainty in Bayesian NNs

Measuring Uncertainty

 The predictive uncertainty for pixel y in this combined model can be 

approximated using:

𝑉𝑎𝑟 𝑦 ≈
1

𝑇
෍

𝑡=1

𝑇

ො𝑦𝑡
2 −

1

𝑇
෍

𝑡=1

𝑇

ො𝑦𝑡

2

+
1

𝑇
෍

𝑡=1

𝑇

ො𝜎𝑡
2

Epistemic
uncertainty

Heteroscedastic 
uncertainty
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Uncertainty in Bayesian NNs

Experiments

 Evaluating methods with pixel-wise depth regression & semantic 

segmentation.

semantic segmentation pixel-wise depth regression 
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Uncertainty in Bayesian NNs

Experiments

 Evaluating methods with pixel-wise depth regression & semantic 

segmentation.

Tasks Dataset

Semantic
Segmentation

CamVid

A road scene
367 training images and 233 test images

11 classes
Resize images to 360×480 pixels

NYU v2 40-class
A indoor segmentation dataset

1449 images with resolution 640 ×480 from 
464 different indoor scenes.

Depth
Regression

Make3D
400 training and 134 testing images
Gathered using a 3D laser scanner
Resizing images to 345×460 pixels

NYU v2 Depth The same dataset used for segmentation above
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Uncertainty in Bayesian NNs

Results

 Semantic segmentation performance : Modeling both aleatoric and epistemic 

uncertainty gives a notable improvement in segmentation accuracy over state 

of the art baselines.

Appendix 3. IoU
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Uncertainty in Bayesian NNs

Results

 Depth regression performance : comparison to previous approaches on depth 

regression data NYUv2 Depth. Modeling the combination of uncertainties 

improves accuracy.
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Uncertainty in Bayesian NNs

Results

Predicted Condition

Positive 1 Negative 0

True condition

Positive 1
True

positive
False

negative

Negative 0
False

positive
True

negative

Precision = TP/(TP+FP)

Recall  = TP/(TP+FN)

by removing pixels with uncertainty larger than various percentile thresholds.

Increasing uncertainty,

Decreasing precision
= Increasing FP
= Increasing recall
= Decreasing FN
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Uncertainty in Bayesian NNs

Results

 This shows that aleatoric uncertainty remains approximately constant, while 

epistemic uncertainty decreases the closer the test data is to the training 

distribution, demonstrating that epistemic uncertainty can be explained away 

with sufficient training data (but not for out-of-distribution data).
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Conclusions

 Bayesian parameter learning prevents overfitting

 L2 norm + MC dropout : practical Bayesian NNs

 Bayesian NNs in computer vision can measure uncertainty

 Measuring uncertainty helps make decision
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Thank You!
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Appendix 1. Variational Inference 
Log marginal likelihood ln 𝑝 𝐷

= න ln𝑝 𝐷 𝑞𝜃 𝑤 𝑑𝑤

= න𝑞𝜃 𝑤 𝑙𝑛
𝑝 𝐷 𝑝(𝑤|𝐷)

𝑝(𝑤|𝐷)
𝑑𝑤

= න𝑞𝜃 𝑤 𝑙𝑛
𝑝(𝑤, 𝐷)

𝑝(𝑤|𝐷)
𝑑𝑤

= න𝑞𝜃 𝑤 𝑙𝑛
𝑝 𝐷 𝑤 𝑝(𝑤)

𝑝(𝑤|𝐷)
𝑑𝑤

= න𝑞𝜃 𝑤 𝑙𝑛
𝑞𝜃 𝑤 𝑝 𝐷 𝑤 𝑝(𝑤)

𝑞𝜃 𝑤 𝑝(𝑤|𝐷)
𝑑𝑤

= න𝑞𝜃 𝑤 𝑙𝑛
𝑝 𝐷 𝑤 𝑝(𝑤)

𝑞𝜃 𝑤
𝑑𝑤 +න𝑞𝜃 𝑤 𝑙𝑛

𝑞𝜃 𝑤

𝑝(𝑤|𝐷)
𝑑𝑤

= 𝐸𝐿𝐵𝑂 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐾𝐿(𝑞𝜃(𝑤)||𝑝 𝑤 𝐷 )
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Appendix 2. Reparameterization trick 

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
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Appendix 3. IoU

https://www.jeremyjordan.me/evaluating-image-segmentation-models/

Ground
Truth

Prediction

Intersection
A∩B

Union
A∪B


